数量保存の課題解決過程における眼球運動の検討

寺田 晃

IV. 問題（研究目的）

しかしながら、それらの研究の場には、対象数とその年齢範囲の再検討の必要がある。課題の種類として、たとえば数量保存の研究については分離量と連続量、さらに両者のそれぞれに集合と順序を指摘され、しかも保存概念の未形成者と形成者との間の比較はされていないだけに留まっているもののが少なくない。従って、保存課題の増加の可否、および年齢の変化の関数として、眼球運動の機能の変化を考察し、発達的見地から課題の種類も視点で検討することが必要と考えられる。

他方、そのような点を、認知活動の一般（特に言語的水準の課題）に障害と遅れをもつ精神肺癌
弱児を対象に検討した研究も、これまでの所ではきわめて少ないようである。寺田（1969）は、同MAの精神弱児と正常児との対象に、Piaget、J.の数の保存課題を実施し、精神弱児が正常児（同MA）に対し、課題解決のレベルにおいてMA 2~3 年の差れを示すことを指摘したが、精神弱児が認知（思考）活動面での障害を有し、そのため課題解決におけるストラテジーの表象化が遅滞し、保存課題の解決が全うされないのであれば、現象的には保存課題の解決過程での眼球運動において、正常児とは異なった傾向が認められることになるものと考えられる。その検討は、単に精神弱児の特徴を示すだけでなく、上述の認知活動およびそれに応ずるストラテジーの眼球運動への反映に関する仮説を、発達とは逆な障害の見地から裏づける一の資料ともなるだろう。

既に知られているように、Piaget、J.（1956）は、数の保存概念の形成過程を中心に、論理的知識の発達過程を指摘し、保存の形成において前に 4 つの位相によるストラテジーが作用することを示唆した。またInhelder、B.（1978）は、ストラテジーの機能に関する考察が、発生的認識論の本の最大の関心事であるとして、課題解決での「発見的学習」を通じて操作およびストラテジーが変容すると述べている。

例を数量の保存概念の解決にとれば、Piaget、J.の場合、当初にまず、刺激布置の 1 つだけ（たとえばビーカーの水の高さの次元）に認知活動が中心化し、刺激布置の変形に対して補償（reciprocity）の取れない段階（1）がある。続いて刺激布置の別な次元（縦の次元）に“中心化”する段階（2）がある。次にそれををもとに刺激布置の 2 つの次元が調整化の方向をとり、課題によって保存を認知することもあるが、一般に多少の判断に迷いをみせるといった性質のストラテジーの段階（3）が成立する。そして最後に、2 つの特性が合成して、いかなる事態でも可逆的に次元が補償され、保存概念を表象可能なストラテジーの段階（4）が示されるという。

では、このような認知発達およびそれに応ずるストラテジーの変容は、眼球運動の上にもいかに反映されるだろうか。ここでは、まず眼球運動は、先に述べた通り、認知に際してのストラテジーを表示する指標であると考えておこう。

そして、差し当り、上記の均衡化過程に関するPiaget、J.の発達の 4 位相を一部修正・補足し、認知活動とストラテジーの眼球運動への表示として、次のような大別 4 つの位相による発想的な変動を推定しよう。

まず、上記1)および2)の過程は、集合（ないし順序）の要素全体が共に直観的につきつかれず、認知活動が縦横のいずれかの次元に偶然中心化する段階であると見ると。そうすると、この(1)と(2)とは合一化され、眼球運動としては、この合一期では、走査はかなり単純であり、刺激布置への眼球の停留が少ないことになるだろう。つまりPiagetのいう(1)と(2)の両認知活動およびそれに応ずるストラテジーは、眼球運動の面では、いずれにしてもその単純さの所では殆ど差違はなく、1 つの段階としてまとめられるものと考える。これを第1段階とする。しかし、(3)の過程は、2 つの次元への活動が交互し、集合（または順序）の要素が全体との関連で分化し始める段階である。そのため走査が軽微複雑化し、眼球の停留が増加することになる（ただし、保存概念が
未形成であることには変わりない。この過程を第 II 段階とする。そして次の(4)の過程は、眼球運動の面では、2 つの位相に分かることになるのではなかろうかと考える。

White, S. H. (1964) は、弁別学習における課題解決への構えと眼球運動との関連を検討し、構えが形成されるまでは停留が一様に増加するが、構えが定着し始めると、停留が次第に減少するとの事実をあげている。また吉田 (1977) は、幾何図形の弁別に際して刺激を反復提示すると、一般に停留頻数とその所要時間が減少すると述べている。

White, S. H. や吉田の研究に対し、本論文の場合は課題を異にするから、保存操作の形成という長期の過程に直接戦略を考えることはできないとしても、学習を経過することにより、認知ないし操作の構造が変容し、ストラテジーに変化が生ずることは、Inhelder, B. も指摘していることである。さらにその場合、課題自体への慣れもでき、眼球運動とその所要時間に当初とは異なった傾向（減少化）が生ずるようになるとも言える。

すなわち、まず集合（ないし順序）の要素が全体との関係で一そう分化し、2 つの次元への活動が脱中心化して協調し（従って保存操作が成立）、眼球運動としては複雑な走査が漸次減少化することになるかと考える。この過程を第 III 段階としておくこと。続いて保存概念が常時表象可能で、眼球の停留頻数が最低状態になり、眼球運動の軌跡を含めてむしろ当初の第 I 段階と同様な傾向が示されることになるものと想定される。すなわち第 IV 段階がこれである。

総じて、課題への反応が妥当なら正答に移行するに及び、眼球運動が未分化な単純な状態から、複雑な分化をみせ、最後に統合的に再度単純な状態へ変容化をたどるものと推定される。その意味で、認知発達およびそれに応ずるストラテジーの変化と眼球運動の変化との関係が示されることになると考える。

研究目的：以上をもって本研究は、正常児・児童ならびに精神薄弱児を対象に、数量保存の課題解決の可能性および年齢の関数として眼球運動の変化を考え、保存概念ないし操作（およびそれに応ずるストラテジー）が形成され変化を定着していく過程が、眼球運動にいかに影響されるか、またその意味で眼球運動にいかなる発達段階が示されることか、の問題を検討することを目的とする。

II. 方 法 ・ 手 続 き

1. 適験児：Table 1 に示した通り、CA 4 ～11 の全 66 名の正常児（幼児・児童）と、MA 5，8，11 の全 24 名の精神薄弱児（おもに内因性・生理型）を対象とする。いずれも S 市内の幼稚園、小学校および養護学校、特殊学級の児童・生徒である。

2. 手続き：被験者を実験室に個別に導入し、作業の過程をあらかじめ伝え、ラポールをつけたのち、被験者の顔面にアイ・カメラ（ナック製品、PAT. No. 501604）をとりつけ、Fig.1. に示した通りの保存課題全 5 問を、No.1から⑤の順で実施し、各問題別にアイマークの動きをビデオ収録した。各問題ごとに事前に、立面上課題材料（マグネット）をつけ、その上に白幕を被っており、課題提示の際して白幕をとって、被験者に課題内容を教示した。提示刺激と
被験者との距離は70cm。刺激は被験者の目の高さの位置に提示された。教示の終了直後にアインマークのビデオ収録を始め（トリガー方式）。課題解決時点でビデオ収録を終えた。課題①、②は分離値の集合、④は分離値の順序、⑤は連続値の集合、⑥は連続値の順序を意味する課題である（寺田（1969）より引用）。課題解決のための教示は、各問ともに通常の保存課題と同様である。

TABLE 1. 被験者の構成

<table>
<thead>
<tr>
<th>CA (MA)</th>
<th>4歳</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>全体</th>
</tr>
</thead>
<tbody>
<tr>
<td>正常児</td>
<td>n</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>10</td>
<td>8</td>
<td>66</td>
</tr>
<tr>
<td>精神薄弱児</td>
<td>n</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>24</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>平均CA</th>
<th>平均IQ</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.6</td>
<td>11.3</td>
</tr>
<tr>
<td>10.1</td>
<td>15.7</td>
</tr>
<tr>
<td>52.0</td>
<td>71.8</td>
</tr>
</tbody>
</table>

Fig. 1. 実験材料の内容

課題①、②については、まず a の事態で赤マグネット・ボールと黒マグネット・ボール（各直径 3cm のもので、6 cm 間隔で上下 8 個を配置）の多・少・等を問い、続いて b の保存事態に移り多少等を問う。③は a、b の各事態で上下 2 本のテープ（幅 1.5 cm、長さ 40 cm）の長・短・等をたずねる。

また④については、まず a の事態で上下 2 列の左から 1 対 1 にペンギン（縦 8 cm、横 2 cm の厚紙でできており）6 cm 間隔で配置）が、手を繋いで歩くことを指し示し、上下 2 つのペンギン (A, B) の対がどれどれとどれになるのかを問う。⑤では、まず a の事態で上下 2 列の左から、1 対 1 で宇宙人（高さ 7 cm、幅 1.5 cm の厚紙でできており、8 cm 間隔で配置）
が手を繋いで歩いて行くことを教示、続いてa、bの各事態で、上列のA、Bと手を繋ぐものが下列のどれかを問う。

どの課題においても、応答に際しては、その理由をたずね、数量保存に関する同一律、可逆性、相補性などの推理のいずれかが述べられた場合を正答とした。

各課題別に、実験材料の内容は、Fig.1に一覧する通りである。課題の提示は、課題番号の順序（①→⑤）で行った。

3. 実施期間：昭和53年5月～7月

III. 結果と考察

A. 正常児の結果とその考察

まずTable 2.は、全5種類の課題に対する正反応の年齢別百分率を示す。同表は、集合の課題（①〜⑤）と順序の課題（④、⑤）との両者で、それぞれa、b（当初の多少等判斷の場合）とb、（保存の多少等判斷）との各事態の別に構成されている（課題④、⑤については、さらにA、B両問の別に百分率が記載されている）。Table 2.にみると、CA 4の場合には保存事態での正反応がかなり低いが、CA 5およびCA 6を除いて、おおむねCA 7ないしCA 8の時点から以後に保存概念が成立することがわかる。

次に各課題ごとに、課題の解決時におけるアイマークの停止頻数と所要時間を検討してみよう。Fig.2.は、教示を与えて被験者が課題解決過程に入り直後から応答をなした時点までの停止頻数を、年齢および課題の別に示したものである。第1図は、集合（課題①〜⑤）の場合を、第2図は、順序（課題④、⑤）の結果を示す。

なおこの場合、アイマークの停止とは、約2分の1秒の時間をとってアイマークが1点に留まった場合をさす。

Fig.3.は、各課題で要した時間を年齢別に表わしたものであり、第1図は集合の場合を、第2図は順序の場合を示す。

<table>
<thead>
<tr>
<th>Table 2. 保存課題における正反応の百分率（％）</th>
</tr>
</thead>
<tbody>
<tr>
<td>課題</td>
</tr>
<tr>
<td>CA4</td>
</tr>
<tr>
<td>① 100.0</td>
</tr>
<tr>
<td>② 100.0</td>
</tr>
<tr>
<td>③ 100.0</td>
</tr>
<tr>
<td>④ 100.0</td>
</tr>
<tr>
<td>⑤ 100.0</td>
</tr>
</tbody>
</table>

-153-
図2. CA, 課題別の停止頻数

第1図：集合

第2図：順序
さてFig. 2の第1図および第2図によれば、CA4では、どの課題においてもアイマークの停留は極めて少なく、5回前後まで程の停留しか認められない（特に順序课程にそれが著しい）。従って4歳児は、どの課題の刺激もあまり見てはいないことになる。しかしCA5からは上昇を続け、CA6では停留頻数がピークに達する。特に課題④においては、aの多少等判断の停留頻数が平均25回、bの保存の事態のそれが平均29回である。そしてCA7およびCA8（それらは保存概念を成立する年齢である）になると、停留頻数が低下し始め、CA9からCA10でますます低減し、その結果CA11では、停留頻数が当初のCA4と同程度の最下レベルになる。つまりCA4とCA11とを両極として、両者の間に、CA5〜CA6の上昇期、CA7
〜CA10の下降期という2過程（それからの前後の過程を含めて4過程となるが）による変化が認められる。

停留頻数に関するこの一連の傾向は、さらに課題解決の所要時間の結果にも同様に表われている。Fig.3の第1図、第2図の結果によれば課題としては、とりわけ①の所要時間が長い。そしてCA4とCA11の両所要時間が最も短いことがわかる。従ってCA4の子どもは、CA11の子どもと同様に、どの課題に対しても、あまり時間をかけず応答していることになる。

Table 3. 分散分析の結果

<table>
<thead>
<tr>
<th></th>
<th>正反応</th>
<th>優先頻数</th>
<th>所要時間</th>
</tr>
</thead>
<tbody>
<tr>
<td>課題</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>年齢</td>
<td>7</td>
<td>13.60**</td>
<td>7</td>
</tr>
<tr>
<td>e</td>
<td>35</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>計</td>
<td>47</td>
<td>47</td>
<td>47</td>
</tr>
</tbody>
</table>

Fig.4. 停留頻数（別図）
ここでなお注目すべきは，課題解決の当初に提示した課題①での停留頻度とその所要時間に年齢間の差が最も大きく，次に順次，課題の提示順位に従って，年齢間での停留頻度および所要時間の差が一覧に減少する傾向をみせているということである。そのため，停留時間と所要時間との両者で，年齢間にだけでなく課題間に差が生じている。そして，集合に関わる課題③～⑤よりも，順序に関する課題の方が後に実施したためか，一般に停留時間も所要時間も少ない結果となっていることがわかる。TABLE 3. は，この点を分散分析で調べたものであるが，停留頻度と所要時間について，年齢と課題との両者でそれぞれ危険率1％以下（＊＊）により有意差が認められる。

しかしこの課題間の停留頻度および所要時間の差は，個々の課題のいわゆる難易度と，解決に必要な操作の有無に起因するものではなく，むしろ課題実施上の順位によるものと考えられる。いまFig. 2. （第1図，第2図）に示した停留頻度の結果を，課題順序に沿って図示しないと，Fig. 4. の通りになるが，課題の①から⑤にかけての頻度の減少に，学習曲線状の傾性が察知されるようす。すなわち，課題解決をすすめて行く中で，少なくとも課題解決に対する反応の学習的構えが形成された結果（言い換えれば，慣れがでて），課題間の差が生じたと見るのが当分ではあるいか。

従って既述の傾向，すなわち停留頻度と所要時間がCA6をピークとするという事実があることは確実であるが，それは，反応上の学習的構えが形成されないうちは明瞭であるが，学習的構えが形成されるに従って，次々に低減していく傾向であるともいえよう。

以上，これまでの結果を一通り整理すると，次のような結果の傾向が指摘（察知）されるよう。

① 保存課題の解決は，概ね7歳ごろから可能である。
② 解決の過程での眼球運動の傾向では，CA4とCA11の子どもも，いずれにしても一連の課題解決の当初から，課題の刺激配置には殆ど注目せず（時間をかけず）。刺激配置を“一様式”に捉えて応答する傾向がある。
③ その中間のCA5～CA10の子どもも，CA6をピークとして，いずれも“一様式”の捉え方せず，“注視式”に刺激配置をよく見て応答する傾向がある。
④ そこには，注視の上昇期（CA5→CA6）と下降期（CA7→10）という2段階がある。
⑤ しかしこのCA5～10の子どもも，そうした傾向を示すのは，課題順序の当初段階である。同種の課題に応答していいく間，次第に応答への構えを学習し（慣れ）次第に応答し“一様式”に近づいていく。ただし，その構えをとって応答が早くなされるようになったから言って，認知能力が変わったということにはならない。誤反応，正反応のいずれであれ，ストラテジーが早く採択されるようになって（慣れによって応答まで時間が短かくなった。注視頻度が減少しただけのことを言うよう。
⑥ 停留頻度と所要時間の年齢の変化にて，4過程，すなわち「CA4まで」，「CA5～CA6」，「CA7～10」，「CA11以降」が認められる。
B. 精神薄弱児の結果とその考察

次に精神薄弱児について、実験結果をまとめとみよう。ここでは、先の実験課題（Table 2.）のうち課題①～③のみを実施し、④、⑤は行なわなかった。Table 4. は各課題への正答率を、Fig. 5. は課題の刺激配置に対するアイマークの停留頻数をMA 5.、8.、11.の別に示したものであり、Fig. 6. は所要時間を表わしたものである。

<table>
<thead>
<tr>
<th>課題</th>
<th>MA5</th>
<th>MA8</th>
<th>MA11</th>
</tr>
</thead>
<tbody>
<tr>
<td>①a</td>
<td>83.3</td>
<td>75.0</td>
<td>100.0</td>
</tr>
<tr>
<td>①b</td>
<td>0.0</td>
<td>37.5</td>
<td>87.5</td>
</tr>
<tr>
<td>②a</td>
<td>83.3</td>
<td>100.0</td>
<td>87.5</td>
</tr>
<tr>
<td>②b</td>
<td>0.0</td>
<td>37.5</td>
<td>75.0</td>
</tr>
<tr>
<td>③a</td>
<td>0.0</td>
<td>0.0</td>
<td>100.0</td>
</tr>
<tr>
<td>③b</td>
<td>0.0</td>
<td>12.5</td>
<td>37.5</td>
</tr>
</tbody>
</table>

（精神薄弱児）

（注） 数字は％

Fig. 5. MA、課題別の停留頻数

第1図：集 合

（注）

- 158 -
第2図：順 序

Fig. 6. MA, 課題別の所要時間

第1図：集 合
Table 4. によると、精神薄弱児では、まず一般に正常児が正反応に達するMA 8 での正反応率がかなり低く、MA 11においても保存が完全に理解されてはいない、正常児に比べるとMAで約3年ないしそれ以上の遅れのあることがわかる。さらにFig. 5.のアイマークの停留頻数の傾向によれば、先に正常児に認められたような年齢間での上昇から下降への傾向は認められない。そのことは、Fig. 6.の所要時間についても同様である。ただし、課題解決を重ねるにつれて、1rf左表面度は次第に低減の傾向を示す。そのことは、Fig. 5.を課題の系列で再図式化したFig. 7.によって認められる。しかし、正常児がC A 11において示していた程度の低い停留頻度（Fig. 2.）が、各課題の結果に認められなかったわけではない。

このような分析とは別に、われわれが手にした当実験での同じビデオを検討したところでは、一般に精神薄弱児には、刺激装置からのアイマークの逸脱が著しかった。ちなみに全5課題で24名中16名（66.7%）が逸脱を示し、その総数は44回であり、1名について平均3回の逸脱が認められている。これに対し正常児の場合は、全66名中2名（3%）に逸脱があったが、その回数は全4回にとどまる（x検定により、逸脱した対象児の人数に危険率0.1%以下で有意差を認める）。

従って精神薄弱児の場合、課題解決が組織的なかたちで行われていない傾向が伺われる。そこで、アイマークの動きの質的な側面を捉える意味で、特に課題①および②の解決における眼球運動から、(1)組織的探索とみられる停留（集合内要素の5つ以上を連続的に行した場合）、(2)準組織的探索とみられる停留（集合内の要素の4つないし2つを連続的に行した場合）とを
取り出して、正常児の場合と比較してみよう。

Table 5. は、精神脇弱児（MA 5, 8, 11）に正常児（CA 4, 5, 8, 11）を対照させ、両対象の実験結果を再整理して、刺激の探索様式を、上記の 2 走査別に係数として示したものである。それによると、正常児（N）の場合は、当初 CA 4 では組織性を欠くが、次回、集合の要素を個々に組織的に追跡してかかっていることがわかる。ちなみに課題①②を合計した場合の CA 5 での組織的探索数は 22 個、CA 8 でのそれは 41 個である。もっとも CA 11 では 0 となっているが、これは、CA 5, 8 の探索の過程を経過した関係で、既に組織的に走査する必要がなくなっている上位の段階であることによって示しているものと言えよう。ところが、正常児のこのような傾向に対して、精神脇弱児（R）の場合は、組織的探索−①−、ないし準組織的探索−②−といえるもののささえもが殆ど認められない。

以上のことから、精神脇弱児においては、既述の正常児の場合のように、停留頻度（所要時間）の年齢的な変化傾向に乏しく、刺激配置への注意の集中を欠くかのように観察の逸脱が顕著であり、一貫したストラテジーで課題を解決するという構えがとられてはいないようにみられる。

IV. 討論・要約

先にわれわれは、「問題」において眼球運動の 4 つの位相による変化（第 I 段階から第 IV 段階）を想定したが、これまでの結果における反答率、停止頻度（所要時間）を総合しながら、以下に Fig. 6. に示した通りの位相的変化のモデルを指摘することによって、4 位相の仮説の成立を説明することとしよう。
Fig. 6. 眼球運動の位相的変化のモデル

<table>
<thead>
<tr>
<th>段階</th>
<th>正常児</th>
<th>精神薄弱児</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>正→正常</td>
<td>正→正常</td>
</tr>
<tr>
<td>II</td>
<td>正→正常</td>
<td>正→正常</td>
</tr>
<tr>
<td>III</td>
<td>正→正常</td>
<td>正→正常</td>
</tr>
<tr>
<td>IV</td>
<td>正→正常</td>
<td>正→正常</td>
</tr>
</tbody>
</table>

注1. 点線は逸脱を示す

まず第1段階は、およそCA4代までで、ここでは応答は誤反応（保存概念は未形成）、眼球運動は刺激布置の一部のみに当てられる。Fig. 6のI（正常児）に見るように、この期の子どもは、課題の刺激を単純に走査し、直観的に刺激の全体的構想（個々の要素ではなく）、集合なり順序の概観のみを一度に太嘘に捉え、その印象に準拠して応答しようとすることが考えられる。単純走査様式による「探索未分化位相」と言えよう。

次に第2段階は、およそCA5からCA6代に相当する。この期になると、刺激布置がやや分化し始める。眼球が、刺激布置の全体にだけではなく各要素に定着し、その特性を測定する際に走査し出し、アイマークが2集合間でかなり組織的に交互するようになる。しかし未だ全体と個々の要素との関係が結びついて、（保存課題事態では）集合なり順序の全体状態が変化した場合、2つの次元間に認知が十分に補償し合うところまでに至っていない。試行錯誤によって正反応をみることもあるが、推論は一般になお直観的で、誤反応にとどまることが多い。いわば複雑走査様式の「探索上昇分化位相」と言えるだろう。

続いて第3段階は、およそCA7からCA10代までに相当する。この期では、刺激布置が分化し、2つの次元を補償して認識することができ、保存概念の操作が成立し、応答が正反応に移行する。しかし眼球運動の様式は前期段階と全く同様である。もっとも、停留の形態は同様であっても、元型は異なるものと見られる。そして復雑な要素への探索が、かなり急速に消退していく（おそらく具体的操作の完結化、安定化がもたらされるためではないか。そのため、刺激つまり個々の要素への逐次探索が不要化し始め、ストラテジーがその方向をとるものと考えられる。いわば、複雑走査様式の「探索安定分化位相」と言えるだろう。

最後にCA11ごろに、第IV段階となる。この段階は、もともと形式的作業（Piaget, J.）の過程に当たっており、具体的操作が機械的に自動化したかたちで発動される段階である。それだけに、
論理的な推理が定着し、刺激布査の一部を、（あたかも第Ⅰ段階と同じであるかのように）直観的に走査するだけで全体や要素の状態を把握・理解できる。つまり眼球運動としては、これまでのような複雑かつ組織的な傾向はとられなく、単純化する（内面にそのシメが構造化しているため、アイマークが複雑かつ組織的な方向性をとらなかったのではなかろうか、従って当段階は、単純走査様式による「探索統合化位相」の段階と言うことになるのである。

Fig. 7. 探索の典型例

なお、Fig. 7 は、特に課題①、②について、上記の4位相による眼球運動（停留と走査）の探索的特徴を示した実際の具体的例である。図中、▼印は教示を聞いて被験者が課題解決にスタートした時点、▼印は多少等判断を述べ始めた時点を示す。これまでの停留頻数も所要時間は、すべてこの両時点間のものである。

以上これまでみてきた所から、保存課題の成立との関係で「問題」で想定したように、眼球運動に規則的な4段階があること事実と言えよう。そして眼球運動の様相は、認知活動およびそれに応じるストラテジーを示すものと見ることができよう。そのことは、同MAではあっても、保
存課題の解決に遅れを示した精神薄弱児の眼球運動が、正常児のそれほどに明らかに傾向を示していない実验をもってしても言えることと言える。その意味で、眼球運動は認知活動の状態を捉えるのに有効な指標になるものとも想定される。なお、本研究では達成されたかったが、実験教育によって、保存概念が習得され、操作が形成される場合、眼球運動がいかに変容していくかの過程、習得された操作が安定化し定着された場合の眼球運動の変容、さらにはなどを検討することが望まれる。そのことを精神薄弱児についても追求する必要がある。今後の課題である。

要約：本研究は、数の保存課題の解決における眼球運動の発達的特徴と段階を検討した。対象としてCA 4 ～CA 11の正常児・児童全66名、ならびにMA 5、8、11の精神薄弱児全24名をとり、保存課題全5題を内容とした。その結果、正常児について、年齢に即応して、課題刺激に対する探索の活動として、認知発達に対応する眼球運動の4位相の変容が認められた。

すなわち、第1段階は、およそCA 4代までで、応答は誤反応、眼球の走査は単純で、未分化な探索様式に終わる。

第2段階はおよそCA 6代までで、応答は誤反応、刺激配置への認知が分化し始め、走査が複雑化し探索の頻数が上昇する。第3段階はCA 10代までで、探索の様式は前段階と同様であるが、応答が正反応に移行する。第4段階は、探索の頻数が下降化し、およそCA 11から以後で、眼球の走査が第1段階と同様な単純化にもどり、探索が統合化の状態を示す。なお、精神薄弱児については、以上のような4位相の発達は明確でなかっただけです。

文献

Inhelder, B. 1978: New currents in genetic epistemology and developmental psychology:

—164—
野村 省吾 1973：数の比較と眼球運動，京都教育大学教育研究所報，19，37〜43.
野村 省吾 1976：眼球運動過程の発達心理学的検討 —— 幼児の形態再認識過程を通じて——，京都教育大学研究紀要，49，27〜44.
平坂 良二 1973：眼球運動の測定法：平坂良二編：心理学研究法，東大出版会
寺田 晃 1969：精神薄弱児における数概念の発達に関する研究－教示効果を中心として－，教育心理学研究，第17巻，2号，112〜117.
寺田 晃・小鳥 広光 1975：認知発達における眼球の定位運動，I，II，日本特殊教育学会第13回大会論文集
寺田 晃・阿部 康一・宮川 永子 1978：数量認識における眼球運動の発達的検討・その1，日本教育心理学会第20回総会論文集
吉村 直子 1977：眼球運動と認知発達——図形の方向認知に関する考察——，日本教育心理学会第19回総会論文集，368〜369.
（本研究は，筆者と阿部幸一（羽陽短期大学），斎藤永子（聖和学園短期大学）の三名の共同研究である）